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1 Abstract

Quantum ”weirdness” creates mathematical advantage in certain types of com-
puter science problems for quantum systems over classical systems. Given the
hardware for quantum systems is scaled large enough, quantum systems can out-
pace classical systems for many extremely profitable problem types. A widely
cited example is optimization problems. Two quantum methods will be in-
vestigated, one discrete method (VQE) and one continuous method (adiabatic
systems). These procedures operate very di↵erently, but both utilize quantum
mechanics for optimization-based problem-solving. The complexity of both will
also be compared, and an analysis will be made on the future of the quantum
optimization industry.

2 Methodology

This paper is intended as an introduction to quantum mechanics and optimiza-
tion procedures. No prior knowledge about quantum systems is assumed, but
some underlying STEM/engineering background is assumed. The problem types
were chosen to illustrate di↵erent areas of quantum problems. The Infinite Po-
tential Well is a relatively simple example which is always presented early on
in quantum mechanics courses. The Max Cut Problem is an extremely famous
selection from the optimization family, and can be decomposed into a variety
of other popular problem types. Optimization problems are also well known to
those outside of computer science, and are widely applicable to other engineer-
ing fields. A chemical model was not illustrated, as the details would have been
much too intense.

The methodology of this paper shifted from a direct comparison of these two
optimization systems to an introduction of both, with a light comparison also
included. This was done in an attempt to illuminate the field to those who may
not have experience with it, as the methods for quantum optimization are not
widely known, but could be useful to a variety of engineers and scientists now
and in the near-future.

3 Classical Mechanics

Suppose we have mass m, which is restrained to exclusively move along the x-
axis. It is subject to some external force F (x, t). For a problem of this nature,
classical mechanics can be applied to achieve a solution for x(t). We can apply

Newton’s Second Law: F = ma, where a is the acceleration (a = d2x
dt2 ). In a

problem of this form, we can also define the velocity (v = dx
dt ), the momentum

(p = mv), and the kinetic energy (T= 1
2mv

2).
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Figure 2: A mass m constrained on the x-axis under a time-dependent force.

Given this force is conservative, we can assume the following relation, where
V is the potential energy of the system: F = �@V

@x . Newton’s Second Law
thus simplifies to a solvable di↵erential equation which will provide a general
solution for our system. Applying initial conditions to (1) will provide a closed-
form expression for x(t). [4]

m
d
2
x

dt2
= �@V

@x
(1)

4 Quantum Weirdness

In quantum mechanics, our approach is much di↵erent. Position cannot be
exactly specified, and a closed form solution for x(t) is not achievable. In or-
der to understand this completely, we must consider the quantum principles of
superposition and entanglement through the lens of measurement.

4.1 Superposition

First, let’s define a quantum state as a general discrete property of a particle.
Examples of this can include polarization, spin, or even momentum. Quantum
superposition can occur within the state of a single quantum particle. Super-
position describes the linear combination of two discrete states, a feat which is
remarkable to observe physically. [6]

To further explain superposition, let’s consider the Double-Slit Experiment
presented in Figure 3. For years, scientists could not determine whether light
acted like a wave or a particle. It exhibited wave like properties in experiments
and yet it could also be broken down into tiny packets of light (now called
photons). The double slit experiment demonstrated the overlap between wave-
like and particle-like behaviour.

In the experiment, a light source is shot into two gaps in a metal sheet. The
resulting pattern on the back screen can reveal the intermediate behaviour of the
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Figure 3: The Double-Slit Experiment [1]

light source. If a di↵raction pattern is revealed, like that shown in Figure 3, the
light source acted as a wave as it passed through the metal sheet. In order for
this to occur, the light had to have passed through two places at once, and then
was able to interfere with itself on the other side of the sheet. This multiplicity
of state, such as the light’s position, is known as a quantum superposition. [1]

But when does the light source exhibit particle-like behaviour? Upon mea-
surement! Practically, an object cannot be in two places at once, or spinning
in two di↵erent directions. Once we look at the object, or upon measurement,
its state collapses. This is our way of aligning quantum mechanics with real
observations. In the double slit experiment, two distinct stripes will be revealed
on the back screen due to this collapse. The light can either pass through one
slit, or the other, not both at the same time. Experimental results have revealed
that upon closer and closer observation, the di↵raction pattern will vanish in
lieu of two distinct stripes at the locations of the slits. [7]

4.2 Entanglement

Now let’s consider the strangest of the quantum properties, entanglement. Two
quantum particles are entangled when one particle’s state cannot be described
independently of another particle’s state. They are intrinsically linked over
a possibly infinite distance, a tenet Einstein hated with a passion due to its
implications of surpassing the speed of light. [7] An example could involve two
spinning particles, which we know have a total spin which adds up to zero.
Suppose we separate these particles by infinite distance, and measure one. If
the spin is measured to be 1

2 , we immediately know the other particle’s spin is
� 1

2 .
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4.3 Schrodinger’s Cat

Figure 4: An illustration of the Schrodinger’s Cat thought experiment[2]

Both superposition and entanglement are extremely strange to visualize for
macroscopic objects. In order to highlight this absurdity, famed physicist Erwin
Schrodinger devised a feline-based thought experiment known as Schrodinger’s
Cat.

The hypothetical situation devised by Schrodinger is presented in Figure 4.
He assumed a cat trapped in a box was entangled with a radioactive particle
which has the possibility of decay. A Geiger counter is used to detect the
radiation which would be released from such a reaction. If it is detected, a
switch is flipping releasing poison gas, and the cat is killed.

Now, assume we can’t see into the box. Due to superposition of the state
of the particle, the particle has simultaneously decayed and not decayed. The
cat is both alive and dead. Opening the box, synonymous to measurement,
determines the singular state, and the health, of the cat. [8]

This is extremely weird to think about and conceptualize, and yet, these
properties are the basis of quantum mechanics. For small objects, quantum
mechanics has been thoroughly tested to an extremely rigorous degree. Small
particles don’t act exactly how Newton and classical physicists thought they
should. [9]

4.4 Quantum Computers

Quantum Computers use both of these quantum characteristics to their advan-
tage. Instead of using binary switches, or bits, which operate classical comput-
ers, quantum computers utilize qubits. Qubits can be on, o↵, or in any possible
number of superpositions of on and o↵. This, combined with the shared infor-
mation contained within entanglement, gives quantum computers mathematical
advantage over classical computers for certain operations.[10]
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Quantum Computers rely on linear algebra. Each qubit is represented using
a 2-entry column vector. A gate is used to perform operations on a qubit. A 1
qubit gate is represented by a 2x2 matrix. General forms for both are provided
below.

| >=


a

b

�
U =


c d

e f

�
(2)

Through gates applied to qubits, we can form quantum algorithms which
produce a desired resultant qubit state. This process is analogous to circuit
formation in classical systems. [11] This is known as a gate-based quantum
system.

4.5 The Schrodinger Equation

In quantum mechanics, the path of a particle is non-deterministic. Classically,
we can solve out for x(t), knowing exactly how a baseball or a moving cart will
travel in the presence of outside forces. This is not the case for quantum objects,
and we have to model this mathematically. The wave function ( ) defines the
movement of a quantum particle. Squaring the wave function | (x, t)|2 yields
the probability of measuring the particle at a specific distance and time. The
Schrodinger equation governs the values of the wavefunction and its general
form is presented below:

H = E (3)

Here, H is the Hamiltonian of the system and E are the discrete energy levels.
In physics, the Hamiltonian is the total energy of the system (H = T + V ) and
E represents the energy levels a particle can hold. Quantum mechanics gets
its name from these quantized energy levels. Figure 5 illustrates the discrete
energy levels of the Hydrogen atom as an example. Given a Hamiltonian, our
goal is to solve for both the energy levels (E) and wavefunctions ( ). [4]

Figure 5: Discrete Energy Levels of the Hydrogen Atom System [3]
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For those of you who have taken Linear Algebra, this is simply an eigen-
value equation. En are eigenvalues and  n are eigenvectors of H. If you don’t
remember what these are, you may need a refresher on your matrix abilities. I
recommend the cited textbook, which helped me hone my knowledge. [12]

4.6 Quantum Well

This section will provide some elements of a basic quantum mechanics example
given in most physics courses. It is included to give some understanding of what
the energy levels and wavefunctions of a system represent.

Figure 6: Setup for the Infinite Potential Well [4]

Assume we have a potential (V) energy graph such that a particle is trapped
within an Infinite Potential Well is zero. Outside the region, the potential energy
is infinite. Figure 6 has been provided as a reference.

Due to this infinite barrier, our particle is guaranteed to stay within the
well. Our goal is to find the energy levels and wavefunctions associated with
the system. Let us first define our Hamiltonian where h̄ = 1.05 ⇤ 10�34

J · s is
reduced Planck’s constant:

H(x, p) = T + V (x) =
p
2

2m
+ V (x) = � h̄

2

2m

@
2

@x2
+ V (x) (4)

Plugging into (2), we find the following di↵erential equation for the region
inside the well (V=0), included in Equation (5).

d
2
 

dx2
= �2mE

h̄
2  = �k

2
 (5)

Which, when solved, provides us with the following general solution:

 (x) = c1cos(kx) + c2sin(kx) (6)

We can then apply the boundary conditions  (x = 0) =  (x = a) = 0 to
determine the value of c1 and of k. Normalization requires that all probabilities

8



| (x, t)|2 add up to one. This condition determines the final constant, c1. The
final solutions for the energy values and wavefunctions are provided in Equation
(7). [13]

En =
h̄
2
⇡
2
n
2

2ma2
 n =

r
2

a
sin(

n⇡x

a
) n = 1, 2, ... (7)

Figure 7 visualizes the first 3 wavefunctions  n. Remember, squaring the
results is the probability of finding the particle in a specific location. These
results are not universal, and are specific to the problem setup.

Figure 7: First 3 wavefunctions for the infinite square well [4]

Each wavefunction is associated with a specific energy level. Given Figure
7, a particle with E1 is most likely to be found towards the center of the well.
Di↵erently, a particle with E2 has zero probability of being found at the cen-
ter of the well. [13] The wavefunction governs properties of the particle via
probabilities, contrary to the definite nature of classical physics.

4.7 Expectation Values

Hamiltonians aren’t always as simple as the Infinite Potential Well. They are of-
ten extremely complicated. The Hamiltonian for the simplest molecular system,
the Hydrogen Molecule, has been provided below.

H = �
NX

i=1

1

2
⇤ r2

i �
MX

A=1

1

2MA
r2

A �
NX

i=1

MX

A=1

ZA

riA
+

X

j>i

1

rij
+

X

B>A

ZAZB

RAB

Looks like gibberish, right? For molecular systems specifically, the Hamilto-
nian is often extremely large and complicated. Large molecules are unable to
be solved analytically due to the size of the Hamiltonian. There is interest in
deriving useful information, such as the lowest energy energy level and wave-
function, without performing a full eigenvalue decomposition. In order to do
this, we must introduce the idea of bra-ket notation and of expectation values.

Let | > be a wavefunction, represented by a column vector. <  | is its
complex conjugate, represented by a row vector. If this doesn’t make sense,
see [12] for linear algebra prep. In order to find the expectation value of an
operator, like the Hamiltonian, we will use the following definition. This aligns
with our classical understanding of expectation values according to [14].
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E(H) =
X

<  n|H| n > =
X

(p(En))(En) (8)

Given (8), every expectation value is guaranteed to be above the minimum
energy level. This is known as the variational principle, included in (9). This
states that our returned energy is guaranteed to be an upper bound for the
lowest energy state.

E(H) � <  min|H| min > = Emin (9)

Thus, we can pick a  , find its expectation value, rinse, and repeat. Our task
is to vary  until we find the lowest possible value. If you’ve studied computer
science, this should sound like a very specific type of problem: optimization.

5 Optimization Problems

Figure 8: The function f(x) = x
2 � 4x, plotted using Python

Optimization problems can take many forms. The simplest examples involve
one dimensional cost functions. For example, take the function f(x) = x

2 � 4x,
presented in Figure 8. To find its extremum (maximum and minimum points),
we take the derivative and set it equal to zero: ( df

dx = 2x � 4 = 0) and achieve

x = 2 as the exclusive extrema point. The sign of the concavity, or d2f
dx2 , can be

checked to determine whether the point is a minima or maxima.[15]
For more variables and more complicated cost functions, the situation is not

so simple. First, let’s consider the already established example, the Infinite
Potential Well.
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5.1 Variational Principle for Infinite Well

The Hamiltonian for the Infinite Potential Well was established in equation
(3). Our process for the variational method is as follows: We can pick guesses
for our wavefunction | >, and calculate expectation values based upon these
guesses. These guesses are guaranteed to be above the lowest energy level.
Repeated guesses can yield us an extremely close guess to this energy level. All
these solutions will approximately satisfy the Schrodinger equation, and will not
yield exact solutions. [4] The steps below declare a guess for the wavefunction
(�). This was chosen in order to maintain the boundary conditions for Infinite
Potential Well. The constant N1 can be found via normalization, explained in
section 2.5. The expectation values are then calculated by integrating across
the region from 0 to a.

�1 = N1x(a� x) N1 =

p
30

a
5
2

< H >n=

Z a

0
�nH�ndx < H >1=

5h̄2

ma2

From Equation (6), we can find E1 = h̄2⇡2

2ma2 . Creating a direct comparison
with our found expectation value, we see the actual energy is below our guess,
as it should be.[16]

E1 =
⇡
2

2
[
h̄
2

ma2
] ⇡ 4.93[

h̄
2

ma2
]  5[

h̄
2

ma2
]

5.2 Max Cut

Many problems based outside of physics can be cast into a Hamiltonian form.
Optimization problems are one of the most studied examples. Here, I will
consider a small example of the Max Cut problem.

Figure 9: A Three Node, Two Edge Max Cut Problem with Maximal Cut

The Max Cut problem is based around a graph, G. This graph is composed
of Edges, E, and vertices V. A cut is a partition of the vertices, or a line drawn
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on the graph, splitting V into two sets. Typically, edges in E can possess edge
weights; we will consider all edges to be unweighted with weight 1. For an
unweighted graph, the max cut is that which cuts the maximum number of
edges in E. The graph we are considering is presented in Figure 9. A cut is
included; this cut is the maximal cut of the graph.

Assume every node can be represented by zi and that zi 2 {�1, 1}. -1 and 1
will be assigned to either of the two sets, and will be given to nodes assigned to
either set. Let us consider the product zizj . If two nodes are in the same set,
zizj = 1, and if two nodes are in di↵erent sets, zizj = �1. Under this definition,
if we sum over all edges in E, the maximal cut will be the minimum total value
of these products. In other words,

MaxCut(G) ⌘ Minimize

X

(i,j)2E

zizj (10)

But where does quantum computing come in? Consider the Pauli gates,
presented below:

�Z ⌘

1 0
0 �1

�
�Y ⌘


0 �i

i 0

�
�X ⌘


0 1
1 0

�
�I ⌘


1 0
0 1

�
(11)

For simplicity, most measurements in quantum computing occur within the
Pauli Z basis. What this means is that upon measurement, the state will collapse
to one of its two eigenvectors. The eigenvectors of the Pauli Z gate are known
as the computational basis, and have been presented below.

|0 >=


1
0

�
|1 >=


0
1

�
(12)

The computational basis vectors are each associated with a specific eigen-
value, -1 and 1. Upon measurement in the Z basis, any general state will collapse
to one of these two vectors. The outputted expectation value computed with
this state will either be 1 or -1: the eigenvalue attached to the specific basis
vector. Thus, we can theoretically use measurement in the Z basis to represent
possible combinations of -1 and 1 across all of our nodes. The basis vectors |0 >

and |1 > represent node placement in the two distinct sets.
The tensor product allows us to scale this system past one qubit. An example

state for the 3-qubit computational basis has been provided. (13) represents a
cut which places three nodes into the same set. |111 > would represent an
identical cut.
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|0 > ⌦|0 > ⌦|0 >=

2

6666666666664

1
0
0
0
0
0
0
0
0

3

7777777777775

(13)

With this astute observation about the Pauli Z gate, forming the Hamilto-
nian for this system becomes extremely simple. Z gates are applied between
nodes with an edge. The Identity gate �I is applied to nodes with no edge. For
our example in Figure 9, the Hamiltonian is as follows.

H ⌘ (Z ⌦ Z ⌦ I) + (Z ⌦ I ⌦ Z) (14)

In matrix form, this is written as:

H ⌘

2

66666666664

2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 �2 0 0 0 0
0 0 0 0 �2 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2

3

77777777775

(15)

We can compute the expectation value of this Hamiltonian given any general
vector. Below, I’ve provided a brute force method, manually going through all
possible combinations of the 3-qubit computational basis. The amount of qubits
scales with the number of nodes. For larger systems, this method would not be
possible, since the number of basis states scales with 2n.

 h |H| i  h |H| i
|000i 2 |100i -2
|001i 0 |101i 0
|010i 0 |110i 0
|011i -2 |111i 2

13



We see that two values produce the minimum value, or the max cut. Each
has node 0 cut o↵ from node 1 and node 2, representing the cut illustrated in
Figure 9. Two solutions exist because 1 and -1 can be assigned to a given set
with no di↵erence in interpretation. [14]

5.3 Max Cut on a Quantum Computer

But how would we produce these expectation values on a quantum computer?
Setting up the Hamiltonian is easy, and we already provided its form in Equation
(14). Our goal is to supply either the state |011 > or |100 > to this Hamiltonian,
which will produce the minimum expectation value.

Every qubit on a quantum computer starts in state |0 > by convention. Our
goal is to design a circuit U which transforms |000 > to either |011 > or |100 >,
producing the minimum state. These gates are easy to find, U1 transforms
to |011 > and U2 transforms to |100 >. We previously introduced the Pauli
X gate �X , which acts like a classical NOT-gate, flipping the state. We can
apply X gates to flip the state, and I gates to imply no e↵ect to easily find the
transformation.

U1 = �I ⌦ �X ⌦ �X U2 = �X ⌦ �I ⌦ �I

The problem is, we typically don’t know the state we want to transform to for
larger systems. For this we utilize a parameterized gate, called an ansatz when
used in this form. This gate has a set of inputtable variables which modify
the entries of the matrix. When combined with the Hamiltonian, the ansatz
can be changed to produce variable expectation values. [17] The entirety of the
quantum circuit described, with ansatz and Hamiltonian included, is provided
in Figure 10. E�cientSU2 was the parameterized circuit chosen for the ansatz.

Figure 10: The Quantum Circuit Designed to find the Max Cut

Let’s take a step back. Our Hamiltonian is a predefined large matrix which
represents our system. By feeding a changing gate into this Hamiltonian (called
our ansatz), we can produce a range of expectation values. But what is done
with these produced expectation values?

At this point, we hand the keys o↵ to a classical computer. A classical
optimizer will be given the inputs to the ansatz and will continually modify them
and run expectation values on the quantum system until a minimum point is
reached. Through this quantum-classical combination, we can find the minimum
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point without evaluating every computational basis state. This mechanism is
known as the Variational Quantum Eigensolver (VQE).[14]

5.4 Quantum Optimization

Methods exist similar to VQE; there’s actually an entire class of algorithms
named Quantum Approximate Optimization Algorithms (QAOAs) which uses
gated-based Quantum Computers to solve optimization problems. Solvable
problems types can include quantum mechanical problems like the Infinite Po-
tential Well or optimization problems like Max Cut and the famous Graph
Coloring Problem. These methods rely on the gate-based model of quantum
computing. They can provide runtime speedup over classical optimization al-
gorithms, but in only specific scenarios.

Take VQE as an example. Instead of sorting through 2n possible solutions,
we can model the system on n qubits. This is not always guaranteed to be
faster. If our Hamiltonian was an extremely long series of gates, running these
could take longer than classical modeling. For VQE specifically, the length of
the number of gates needs to be reduced passed a certain threshold. This is
extremely important for chemical modeling on quantum systems.[18]

Quantum optimization on gate-based quantum computers is a developing
field with problem speedup in various areas depending on Hamiltonian structure.
But, it is not the only method for quantum optimization. Adiabatic quantum
systems, or their modern equivalent: quantum annealers, dominated quantum
optimization long before VQE or other QAOAs.

6 Adiabatic Quantum Computers

The adiabatic theorem was first proposed in the context of quantum compu-
tation by Farhi, Goldstone, Gutmann, and Sipser in 2000. [19] The adiabatic
theorem’s use in science has existed long before that. It is a tool used by physi-
cists, chemists, and engineers alike.

Before applying it to an optimization, I need to describe what an adiabatic
process is and how it can be utilized.

6.1 Adiabatic Approximations

Imagine a pendulum, like the one presented in Figure 11. This pendulum lies in
a box which is initially still. The pendulum has a period: the time the pendulum
takes to return to a specific spot. Let us define this period as the internal time
of the system, Ti.

Now assume the box is rotated. The period of this rotation will be defined
as Te. If this rotation is quick, the motion of the pendulum will be chaotic,
and extremely hard to predict. Something strange happens when the motion is
slow enough. The pendulum continues to oscillate as if it weren’t being rotated,
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Figure 11: A rotating pendulum within a box[5]

with the plane of rotation slowly shifting. It experiences normal non-rotational
behaviour in a rotational frame.

A very slow change in the boundary conditions of a system (in this case the
rotation of the box) is an adiabatic process. Adiabatic processes are possible
when Te is much larger than Ti. [5] In layman’s terms, the time it takes to create
one cycle is much longer externally than the time it takes for an internal cycle.
Related, the internal rotational velocity will be much faster than the external
rotational velocity.

6.2 Applications to Hamiltonians

Why does this matter, and how do we apply this to our pesky Hamiltonians?
Let H̃(s) be a Hamiltonian that is evolving with time and is also smooth.

Mathematically, this means the Hamiltonian is both continuous and di↵eren-
tiable at every point in time. s is defined as t

T , where T is the total time. Using
Eq (8), we can define our Hamiltonian as a sum of the eigenvalues and their
corresponding probabilities. We write:

H̃ = (s)
n�1X

j=0

Ej(s)| j(s)|2 s =
t

T
s 2 [0, 1] (16)

Think about this intuitively and this should make sense. An average is
just the combination of all possible values multiplied by their probability of
occurrence. This definition is exactly identical. [19]

This is the hardest part to explain, but please stick with me. Given the
movement is slow enough, or T is large enough, the process is adiabatic and the
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internal process will dominate over the external conditions (like in the pendu-
lum earlier). Assume our internal Hamiltonian is well-known, and our external
Hamiltonian is the state which we desire to find (the Hamiltonian as we knew
it previously). If the evolution is slow enough, the internal conditions are in-
variant under the influence of the external forces (in a given reference frame).
In plainer words, the lack of outside influence can turn a known state into an
unknown state, or our desired E0. Mathematically we can describe this process
as follows:

H = (1� s)H̃i + sH̃e (17)

Where H̃i is the internal Hamiltonian and H̃e is the external Hamiltonian,
possessing our unknown state E0. If H̃e is introduced slow enough, an eigenvec-
tor/eigenvalue pair for H̃i is guaranteed to produce an eigenvector/eigenvalue
pair for H̃e. The only thing left to do is make sure the pair for H̃e is the value
we desire, the lowest energy state of the system. The process also has to be
made slow enough so that it is guaranteed to be adiabatic. [20]

6.3 Conditions for an Adiabatic Process

Earlier, I mentioned that for an adiabatic Hamiltonian process, the internal
eigenvector pair is guaranteed to morph into an external eigenvector pair. I
never mentioned which one. For an adiabatic process, energy levels must be
spaced far enough apart that we are guaranteed to achieve this lowest energy
level. Otherwise, we could jump into a higher energy state and not achieve the
desired solution. [20]

In addition, the process must be slow enough to guarantee that the procedure
is adiabatic. Written in 1961, Messiah describes an estimate for this threshold.
We must define �(s) as the di↵erence between the first and second energy state
for any s. More rigorously:

�(s) = E1(s)� E0(s) � = min
s2[0,1]

�(s) (18)

We also must define a value � which relies on the rate of change of the
Hamiltonian. Rigorously, � is defined as:

˙̃
H(s) =

d

ds
H̃(s) �2 = max

s2[0,1]
|[ ˙̃H]|2 (19)

With these two expressions, we can define the time limit required for adia-
batic conditions:[19]

Te �
�2

�2
(20)

This is only a simple example of the conditions required for an adiabatic
process. More rigorously proved definitions exists, but they are out of the scope
of this study.
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6.4 D-Wave

D-Wave is the current leader in Quantum Computing technology involving the
adiabatic theorem. They produce quantum annealing computers which approx-
imate adiabatic conditions. The accuracy of these conditions to true adiabatic
nature is contentious. [21]

The way they do this is extremely complicated, and involves applying entan-
glement and voltage biases to specific qubits to form a voltage landscape that
returns the desired minimum solution. If you’re interested in what this entails,
I’ll provide literature written by D-Wave.[22] It’s extremely interesting, but the
physical hardware is well out of the scope of this study.

D-Wave produces a quantum computer much di↵erent from other popular
quantum systems. Any quantum algorithm cannot be run on D-Wave’s quantum
annealer, and their setup is specific to optimization problems. Currently D-
Wave technology contains over 5000 qubits. This is on par or greater than the
level achieved by more universal quantum systems.

D-Wave has hedged all their bets in the optimization game, but who can
blame them? The field has proved extremely lucrative. There are applications
in finance, chemical modeling, and data storage, among a variety of other fields.
Lockheed Martin was reported to have paid over 15 million dollars to acquire
a D-Wave system in 2022.[23] Keep in mind, this purchase occurred with the
field in its infancy. The price and use cases for optimization problem solvers
will only go up as the technology improves.

7 Quantum Advantage

The question then shifts to, will adiabatic quantum systems have a role in
the future quantum landscape? As shown earlier, normal quantum computers
can also solve optimization problems. Who will dominate the future quantum
optimization landscape, and with what type of system?

A 2008 paper in arXiv tried to answer this question. It cited previous stud-
ies which have proved that an adiabatic process can be simulated on a normal
quantum computing system. By this reduction, they also proved that an adi-
abatic computation can not have computational power greater than a normal
quantum computer. [24] The question then becomes, which will scale quicker
in size and total qubit count? Whoever does will end up dominating quantum
optimization.

Google and IBM have both released public road-maps that anticipate sur-
passing 1 million qubits by 2030. [25] D-Wave does not appear as invested in
this pursuit. Their most recently released estimates suggest increases in the
thousands of qubits, not millions. Despite this, results from optimization prob-
lems run on D-Wave have proved extremely promising. Quantum annealers and
gate-based quantum computers share a lot of overlapped hardware. It is entirely
possible that D-Wave could join the gate-based arena as well.[26]
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8 Conclusion

Quantum optimization is a promising field with a variety of use cases in di↵erent
areas. Optimization is at the center of many Machine Learning and Computer
Science developments. In addition, quantum optimization has applications for
chemical modeling for future virtual laboratories. It also has the possibility of
improving the financial modeling of global economic systems.

Recent studies have shown advantage for D-Wave’s optimization procedures
over classical systems. Gate-based systems should be able to scale much quicker
while being able to gain similar advantage in optimization problems. D-Wave’s
success only illustrates the possible lucrative nature of this field. More research
should be done in understanding the full array of possible use cases for quantum
optimization.

Work should also be done producing helpful literature for utilizing these
systems. These tools can be extremely useful for a variety of problem types,
specifically to those pursuing STEM-based endeavors. Similar to MATLAB or
Python, quantum optimization tools should be more widely known and used as
helper mechanisms.

Glossary

adiabatic Slow enough external conditions that the internal behaviour of a
system dominates, avoiding possible chaotic behaviour.. 15–18

ansatz A parameterized gate representing our wavefunction. The ansatz is
varied by the classical optimizer till a minimum point is reached. 14

eigenvalue The scaling factor (value) attached to the eigenvalue equation. In
quantum mechanics, the discrete energy levels of the Hamiltonian. E0,
the lowest valued eigenvalue, is our desired solution. 8, 9, 12, 16, 17

eigenvector The vector attached to the eigenvalue equation. Represents a lin-
ear transformation in matrix algebra equal to a scaling factor. In Quantum
Mechanics, an eigenvector is the wavefunction. When squared, this gives
us the probability of a system being in a certain state. 8, 12, 17

entanglement The property describing shared information between two sepa-
rated objects. In the case of quantum computers: qubits. 4–6, 18

Hamiltonian H = T + V : The total energy of the system including Potential
and Kinetic Energy Terms. 7–9, 11, 13–17

Infinite Potential Well A toy quantum mechanics example where a particle
is constrained between two infinite barriers of potential energy. 3, 8–11,
15
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Max Cut A graph-based optimization problem. The solution is the maximal
cut of a graph, a physical cut which partitions the nodes into two sets,
taking out max edge weights in the process . 3, 11, 15

normalization To gain physical meaning, all probabilities must add up to 1.
Normalization skews a wavefunction to adhere to this strict condition. 8,
11

optimization A field of computer science centered around finding the ex-
tremum of cost functions of varying complexities. 3, 10, 11, 15, 18, 19

superposition A linear combination of two quantum states. 4–6

V The Potential Energy of a System. How much energy an object could po-
tentially acquire. 4, 8

VQE A gate based method for optimization using both classical and quantum
systems. Expectation values are calculated by a quantum computer, and
varied by a classical optimizer. 3, 15
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